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Abstract
A standard assumption of most sequential sampling models is that decision-makers rely on a decision criterion that remains
constant throughout the decision process. However, several authors have recently suggested that, in order to maximize
reward rates in dynamic environments, decision-makers need to rely on a decision criterion that changes over the course
of the decision process. We used dynamic programming and simulation methods to quantify the reward rates obtained by
constant and dynamic decision criteria in different environments. We further investigated what influence a decision-maker’s
uncertainty about the stochastic structure of the environment has on reward rates. Our results show that in most dynamic
environments, both types of decision criteria yield similar reward rates, across different levels of uncertainty. This suggests
that a static decision criterion might provide a robust default setting.

Keywords Collapsing bounds · Diffusion model · Reward rate maximization

Introduction

Considerations of what constitutes optimal behavior have
long played a prominent role in research on human
decision-making (e.g., Kahneman and Tversky (1979) and
Savage (1954)). Arguments based on economic optimality

� Udo Boehm
u.bohm@uva.nl

Leendert van Maanen
lvmaanen@gmail.com

Nathan J. Evans
nathan.j.evans@uon.edu.au

Scott D. Brown
scott.brown@newcastle.edu.au

Eric-Jan Wagenmakers
ej.wagenmakers@gmail.com

1 Department of Experimental Psychology, University
of Groningen, Grote Kruisstraat 2/1, 9712TS Groningen,
The Netherlands

2 Department of Psychology, University of Amsterdam,
1018 XA Amsterdam, The Netherlands

3 School of Psychology, University of Newcastle,
Callaghan, NSW 2308, Australia

have traditionally focused on economic decisions, where
decision-makers choose among different options based on
their associated rewards (Summerfield and Tsetsos, 2012).
However, in recent years economic arguments have also
gained attention in the area of perceptual decision-making,
where decision-makers have to choose among different
interpretations of a noisy stream of sensory information.
The process by which an interpretation is chosen is often
characterized as a sequential sampling process; decision-
makers first set a static decision criterion, a fixed amount
of information they require to commit to a decision, and
subsequently accumulate sensory information until that
criterion is reached (Ratcliff, 1978; Ratcliff & Smith, 2004;
Edwards, 1965; Heath, 1981; Stone, 1960).

Recently, a number of authors have argued that per-
ceptual decision-making is governed by reward rate (RR)
optimality, which means that decision-makers aim to maxi-
mize their expected rewards per unit time (Cisek et al., 2009;
Drugowitsch et al., 2012; Shadlen & Kiani, 2013; Thura
et al., 2012). As detailed below, RR optimality implies
that a static decision criterion will yield maximal rewards
if certain aspects of the decision environment, such as task
difficulty and rewards, remain constant over time. However,
if these aspects of the decision environment vary dynam-
ically, decision-makers need to dynamically adjust their
decision criterion to obtain maximal rewards. Proceeding
from the assumption that decision environments are typ-
ically dynamic, Cisek et al. (2009), Shadlen and Kiani
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(2013), Thura et al. (2012) have argued that a dynamic
decision criterion that decreases over time should replace
the standard assumption of a static criterion. This eco-
nomic optimality argument has received much attention in
the literature and has been incorporated into formal mod-
els of perceptual decision-making (Huang and Rao, 2013;
Rao, 2010; Standage et al., 2011). However, reviews of
the existing literature and published data suggest that the
empirical support for an axiomatic decreasing decision cri-
terion is considerably weaker than claimed by its proponents
(Boehm et al., 2016; Evans et al., 2017a; Hawkins et al.,
2015; Voskuilen et al., 2016). Moreover, studies that provide
support for a decreasing decision criterion often make addi-
tional ad hoc assumptions that complicate the interpretation
of theoretical and empirical results (Boehm et al., 2016).

Evans et al. (2017a), for instance, provide an extensive
discussion of Cisek et al.’s (2009) urgency gating model
(UGM), which implements a dynamic decision criterion,
in comparison to Ratcliff’s (1978) diffusion model (DM),
which implements a static decision criterion. As Evans et al.
point out, both models make markedly different behavioral
predictions. However, the relationship between these
behavioral predictions and the type of decision criterion
each model uses is not clear. Although both models share
the core assumption of a Gaussian evidence accumulation
process, they differ in several other assumptions that are not
related to the decision criterion but may critically influence
the behavioral predictions. Cisek et al. (2009) and Thura
et al. (2012), on the other hand, emphasize the role of
the dynamic decision criterion for differences in predicted
RR between the UGM and the DM. Evans et al. (2017a)
further find that studies in support of the UGM typically use
heuristic reasoning, and the conclusions from this reasoning
often do not match the actual predictions of the model.
Boehm et al. (2016) note similar shortcomings in studies
that compare other implementations of a dynamic decision
criterion to a static decision criterion. In the present work,
we will implement dynamic and static decision criteria in
a common framework and we will carry out a systematic
theoretical analysis for a typical experimental design to
evaluate claims that a decreasing dynamic criterion is
generally RR optimal.

The criterion that is typically invoked to decide whether
a static decision criterion or a dynamic decision criterion is
RR optimal is the dynamics of the decision environment.
In a static task environment in which all trials are equally
difficult (i.e., all stimuli are equally noisy) and the reward
for a correct decision remains constant over time, RR
optimality can be achieved using a static decision criterion.
Specifically, because task difficulty is constant across trials,
the expected decision time under a static decision criterion
is the same for all trials and can be minimized for a given

accuracy level by appropriately setting the static decision
criterion, thus maximizing RR (Bogacz et al., 2006; Moran,
2015; Wald and Wolfowitz, 1948; Wald, 1945). However,
in a dynamic task environment where some trials are very
difficult and other trials are relatively easy but the reward
for a correct decision remains constant, a static decision
criterion is no longer optimal. Because task difficulty varies
across trials, the expected decision time under a static
decision criterion is shorter for easy trials, and longer for
very difficult trials. By decreasing the decision criterion as
time passes, decision-makers can reduce the time they spend
on hard trials and instead attempt a new trial that is likely to
be easier, and thus more likely to yield a reward in a short
amount of time (Shadlen & Kiani, 2013; Cisek et al., 2009;
Thura et al., 2012). Therefore, in situations with constant
rewards and mixed trial difficulties, a dynamic decision
criterion should be RR optimal whereas in situations with
constant rewards and fixed trial difficulties a static decision
criterion should be RR optimal.

A further factor of influence on the optimal decision cri-
terion are sampling costs (Drugowitsch et al., 2012; Buse-
meyer & Rapoport, 1988; Rapoport & Burkheimer, 1971).
In the decision environments considered above, decision-
makers receive a fixed reward for a correct decision and
the dynamics of the environment are determined by whether
task difficulty remains constant over time. A second way
in which a decision environment can be dynamic is if the
decision-maker’s total reward is time-dependent, which can
be implemented through the addition of sampling costs to a
fixed reward for correct decisions. Sampling costs are costs
a decision-maker incurs by delaying the final decision by a
time step to collect additional sensory information. Depend-
ing on the specific cost function, sampling costs can render
either increasing or decreasing dynamic decision criteria RR
optimal.

Despite its intuitive appeal, the categorization of the
decision environment in terms of the dynamics of task
difficulty and sampling costs provides an incomplete
account of human decision behavior. Empirical studies that
create a dynamic decision environment regularly fail to
elicit a dynamic decision criterion. For example, in lexical
decision tasks participants are typically presented a mixture
of high- and low-frequency words, where high-frequency
words can be considered easy stimuli and low-frequency
words can be considered hard stimuli. Although data from
lexical decision tasks have for many years been analyzed
using the diffusion model (Ratcliff (1978)), which relies
on a static decision criterion, no studies have reported any
systematic discrepancies between model and data (e.g., Yap
et al. (2015), Ratcliff and Smith (2004), and Wagenmakers
et al. (2008)). Similarly, in a recent study using numerosity
judgment and motion discrimination tasks, a mixture of
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difficulties failed to reliably elicit a dynamic decision
criterion (Voskuilen et al., 2016).

A possible reason for this failure of the categorization
in terms of dynamics is that using a static decision
criterion in a dynamic decision environment might only
yield a negligibly lower RR than the optimal dynamic
decision criterion (Ditterich, 2006), and therefore provide
insufficient motivation for decision-makers to adapt their
decision criterion. Moreover, decision-makers usually do
not have full knowledge of the stochastic properties of
the decision environment but need to build an internal
representation based on repeated interactions with the
decision environment. The uncertainty inherent in such
an experience-based representation might further diminish
the RR gained by adopting an optimal decision criterion
compared to a suboptimal static decision criterion. In the
present study, we will investigate the influence of the
dynamics of the decision environment and of uncertainty
about the stochastic structure of the environment on RR
optimality. To this end, we will show how, in a typical
experimental paradigm, the expected RR under the optimal
dynamic decision criterion and under a static decision
criterion behave as a function of the stochastic structure
of the decision environment and the decision-maker’s
uncertainty about this structure.

Decision environment and sequential
samplingmodel

For our theoretical analysis, we will consider a type of
decision environment that is typically created in expanded
judgment tasks (Irwin et al., 1956). In these tasks,
participants are presented stimuli that consist of a series
of discrete events of fixed duration. Each event is sampled
from a set of possible events according to a probability
distribution and participants are asked to make inferences
about the probability distribution; in most cases they are
asked to decide which of the events has the highest
probability of occurring. For instance, participants might be
shown two circles that flash at different rates and be asked
to decide which circle flashes at a higher rate (e.g., Sanders
and Ter Linden (1967) and Wallsten (1968)). One major
advantage of expanded judgment tasks over other types
of decision tasks is that they allow researchers to directly
track decision-makers’ current state of evidence. Given the
events presented to the decision-maker up to a specific
point in time, researchers can easily compute the posterior
probability of one event type having a higher probability
of occurring than the other event types. The posterior
probability at the time of decision commitment then gives
an approximation of the decision-maker’s decision criterion.

Stochastic structure of the decision environment

The type of experimental task we will analyze here is a two-
alternative forced choice (2AFC) task in which participants
might, for instance, be presented two visual stimuli, one
on the left side of the screen and one on the right. Each
stimulus consists of a sequence of sensory events that are
presented in fixed intervals. Each sensory event consists of
either the presence of sensory information, a positive event,
or the absence of sensory information, a negative event. If
stimuli consist of a series of light flashes, for instance, the
occurrence of a flash is a positive event whereas the absence
of a flash is a negative event. The events that constitute
a stimulus are sampled independently from the positive or
negative category according to a probability distribution that
is specific to each stimulus. In particular, for one of the
two stimuli, the target, the rate θT of a positive event is
higher than for the other stimulus, the distractor, for which
positive events are sampled with rate θD . The sampling of
the events for each stimulus thus constitutes a series of
independent Bernoulli trials and the decision-maker’s task
is to decide for which of the two stimuli the rate parameter is
higher.

Because the events for both stimuli are sampled inde-
pendently, there are four types of observations the decision-
maker might make. These observations constitute a random
variable X with values x ∈ {(1, 0), (0, 1), (1, 1), (0, 0)}.
First, a positive event might be sampled for the target stim-
ulus but not for the distractor (e.g., the target flashes but not
the distractor), in which case the decision-maker observes
evidence for the target having the higher rate parameter
and X = (1, 0). The probability of this occurring is p =
θT (1 − θD). Second, a positive event might be sampled
for the distractor but not for the target (e.g., the distractor
flashes but not the target), in which case the decision-maker
observes evidence for the distractor having the higher rate
parameter and X = (0, 1). The probability of this occur-
ring is q = (1 − θT )θD . Note that our assumption that
θT > θD implies p > q. Third, a positive event might be
sampled for both stimuli (e.g., both stimuli flash), in which
case X = (1, 1) and the probability of this event is θT θD .
Finally, a negative event might be sampled for both stim-
uli (e.g., no stimulus flash), in which case X = (0, 0) and
the probability of this event is (1 − θT )(1 − θD). Note that
although the last two types of observations do not convey
information about how the rate parameters differ between
the two stimuli, they do provide information about the rate
at which events occur in general. This type of information is
essential when decision-makers have incomplete knowledge
of the structure of the task environment and need to infer the
rate parameters for the two stimuli from their interactions
with the task environment.
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Sequential samplingmodel

The standard way of modeling the type of 2AFC task just
described is in terms of a sequential sampling problem
in which the decision-maker entertains two competing
hypotheses (Rapoport and Burkheimer, 1971; Ratcliff,
1978). The first hypothesis, Hl , states that the left stimulus
is the target. The second hypothesis, Hr , states that the
right stimulus is the target. Each hypothesis Hi , i ∈ {l, r},
implies a likelihood function λi(x) for the observations of
X. The likelihood function underHl is:

λl(x) =

⎧
⎪⎪⎨

⎪⎪⎩

θT (1 − θD) if x = (1, 0)
θD(1 − θT ) if x = (0, 1)
θT θD if x = (1, 1)
(1 − θT )(1 − θD) if x = (0, 0)

. (1)

Due to the symmetry of the hypotheses, the likelihood
function under Hr is the same as the likelihood function
underHl with the roles of θT and θD reversed.

Before observing any events, the decision-maker might
hold a prior belief π(0) thatHl is true. We will assume here
that the decision-maker is unbiased, that is, π(0) = 0.5. The
decision-maker subsequently observes a series of discrete
events xt at time steps t ∈ {1, . . . , N} and updates the prior
belief after each observation according to Bayes’ rule:

π(t) = π(t − 1)λl(xt )

π(t − 1)λl(xt ) + (1 − π(t − 1))λr(xt )
. (2)

After each observation the decision-maker faces a
choice between three options (cf. Wald’s 1945) sequential
probability ratio test). First, decide that Hl is true, second,
decide that Hr is true, or, third, postpone the final decision
and wait for an additional observation. This choice is
governed by the decision-maker’s decision criterion. If
the posterior belief π(t) after the t th observation that
Hl is true exceeds a certain upper criterion value, δl(t),
the final decision is made immediately that Hl is true.
If π(t) falls below a certain lower criterion value, δr(t),
the final decision is made immediately that Hr is true.
Because we assume that rewards depend only on the
accuracy of the decision but not the specific stimulus chosen
(see next section), the upper and lower decision criterion
are symmetric around 0.5, that is, δr(t) = 1 − δl(t),
and it suffices to consider only one decision criterion. If
the posterior probability after the t th observation exceeds
neither decision criterion, the final decision is postponed by
at least one time step.

Reward rate optimal decision criterion

According to the RR hypothesis, decision-makers should
choose a decision criterion that maximizes their expected

RR. The specific shape of the RR optimal decision criterion
depends on the structure of the task environment and the
decision-maker’s knowledge of this structure. Here we
will consider three factors that influence the shape of the
RR optimal decision criterion. We already mentioned the
role the dynamics of the decision environment play in
determining the shape of the optimal decision criterion.
In a task environment with constant total rewards and
constant difficulties across trials, a decision criterion that
remains constant throughout the decision process (i.e., a
static decision criterion) will yield the maximal RR (Wald,
1945). On the other hand, if the decision environment
is dynamic, either due to a variable task difficulty or
due to a time-dependent total reward, a criterion that
changes over the course of the decision process (i.e., a
dynamic decision criterion) is optimal (Frazier & Yu, 2008;
Rapoport & Burkheimer, 1971). Here we will focus on the
effect variable sampling costs have on the shape of the
optimal decision criterion as this allows for a relatively
straightforward mathematical analysis. A discussion of the
effect of variability in task difficulty can be found in
Malhotra et al. (2018).

The second factor we will consider is the overall
difficulty of the experimental task. Although we assume that
task difficulty is constant, a higher overall task difficulty
means that correct decisions require more observations.
This introduces a trade-off between the time spent on a
decision and the probability of earning a reward, which
should be reflected in the shape of the RR optimal decision
criterion.

The third factor we will consider is uncertainty about
the structure of the decision environment. Uncertainty
may concern several aspects of the experimental task,
such as the rate parameters of the target and distractor
stimulus, response deadlines, or the sampling costs the
decision-maker has accrued at a given point in time.
However, many sources of uncertainty can be controlled
experimentally. Uncertainty about response deadlines and
sampling costs, for instance, can be eliminated by explicitly
displaying the remaining time and the accrued sampling
costs. We will therefore focus on the effect uncertainty
about the rate parameters of the target and distractor
stimulus has on the shape of the RR optimal decision
criterion.

Formal definition of reward rate Reward rate can be
generally defined as (Drugowitsch et al., 2012):

RR = 〈R〉 − 〈C(Td)〉
〈Tt 〉 + 〈ti〉 + 〈tp〉 , (3)

where 〈·〉 indicates the average over choices, decision times,
and values of ti and tp. 〈R〉 is the average reward for the final
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decision. 〈C(td)〉 denotes the average total sampling costs
at decision time Td . These are the costs a decision-maker
incurs by postponing the final decision by at least one time
step to observe an additional sensory event. The sampling
costs at each point during the decision process are given by
the cost function c(t) and a decision-maker who gives a final
decision after Td time steps will have to pay total sampling
costs C(Td) = ∑Td

t=1 c(t).
The quantities in the denominator in Eq. 3 represent

the effect of temporal discounting; rewards and sampling
costs affect RR less strongly as they are accumulated over
a longer period of time. 〈Tt 〉 is the expected total duration
of each trial, 〈ti〉 is the average inter-trial interval and
〈tp〉 is the average punishment delay imposed for incorrect
responses. Note that this formulation of RR differentiates
between the decision time Td and the total trial duration
Tt ; although the decision-maker’s accumulated sampling
costs depend on Td , the trial might continue without
further sampling costs for an additional period of time
Tt − Td after the decision-maker has indicated a final
decision.

In this general form, RR depends on a number of
factors that complicate the derivation of the optimal decision
criterion and are not an essential part of expanded judgment
tasks. We will therefore introduce some simplifying
assumptions that make the formulation more amenable to
our theoretical analysis. First, we will assume that all trials
have the same length Tt , independent of the decision-
maker’s decision time Td , and that the inter-trial interval
ti is fixed. Second, we will assume that there is no
punishment delay tp associated with incorrect responses.
With these simplifications in place, the denominator in Eq. 3
becomes a constant and decision-makers can maximize
RR by maximizing the expected net rewards in the
numerator.

Given the sequential sampling model and the structure
of the experimental task with parameters θT and θD and a
cost function c(t), the optimal decision criterion can now be
derived using dynamic programming techniques (Bellman,
2003; Rapoport & Burkheimer, 1971). In what follows,
we will first show how the RR optimal decision criterion
is affected by sampling costs and task difficulty under
the sequential sampling model outlined above, where it is
assumed that the decision-maker has complete knowledge
of the stochastic structure of the decision environment.
We will subsequently modify our sequential sampling
model to include uncertainty about the stochastic structure
and show how this uncertainty affects the RR optimal
decision criterion. Moreover, we will compare the RR
optimal dynamic decision criterion to the best static decision
criterion, which yields the highest RR among all possible
static decision criteria.

Influence of sampling costs We consider two different
reward schemes and the optimal decision criteria they
imply. Both reward schemes have in common that the
decision-maker receives a constant reward of 1000 points
for correct decisions and a constant penalty of -500 points
for incorrect decisions. In addition, the decision-maker
incurs sampling costs every time the final decision is
postponed by one time step. Under the first reward scheme,
additional observations become more expensive as time
passes, that is, sampling costs increase. Under the second
reward scheme, additional observations become cheaper as
time passes, that is, sampling costs decrease. We implement
these two reward schemes using a logistic cost function that
we parameterize so that, over the course of 30 observations,
the total sampling costs accrue to 500 points. Together with
the fixed rewards and penalties for correct and incorrect
decisions, this choice of the cost function implies that,
after 30 observations, the expected reward for guessing is 0
points. We will furthermore assume that the decision-maker
has to commit to a final decision after 30 time steps and not
deciding will result in a penalty of -1000 points (i.e., the
total sampling costs for 30 time steps plus the penalty for
an incorrect response). For the increasing costs case the cost
function is:

c(t) = 74.92217

1 + e3−(t/10)
(4)

and the function for the decreasing costs case is obtained
by replacing t by 31 − t , which means that the function is
traversed in the opposite direction. Our choice of the logistic
cost function was based on a specific experimental setup
in which the accumulated sampling costs were displayed
in real time. Sampling costs had to grow non-linearly for
decision-makers to be able to clearly identify changes in the
speed at which sampling costs grew at the start of a trial
compared to the end of a trial. Nevertheless, as the argument
below shows, a large class of monotonically increasing or
decreasing cost functions will lead to qualitatively similar
results.

We will focus on an intuitive account of the different
effects of the two cost functions on the optimal dynamic
decision criterion here. A formal description of the dynamic
programming techniques used to derive the optimal decision
criterion is presented elsewhere (e.g., DeGroot (1969) and
Rapoport and Burkheimer (1971)). Figure 1 shows the cost
function (top panels) and optimal dynamic decision criteria
(solid lines, bottom panels) for the increasing cost case (left)
and the decreasing cost case (right) with θT = 0.38 and
θD = 0.24. The jagged appearance of the decision criteria
is due to the discrete time steps and evidence units in the
experimental task considered here. Decision-makers update
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Fig. 1 Cost functions and example static and dynamic decision criteria. The top panels show the functions determining the sampling costs for
an additional observation at time step t . In the left panel the costs increase as time passes, in the right panel the costs decrease as time passes.
The bottom panels show the optimal, dynamic decision criteria for each cost function as solid lines. The best constant, static decision criteria are
shown as gray lines. The decision criteria shown are the optimal dynamic and best static criteria for θT = 0.38 and θD = 0.24

their posterior beliefs after each new observation, which
are presented at fixed time intervals. Moreover, because the
number of possible observations at any time is finite, the
posterior belief is updated in discrete steps.

As can be seen in the bottom left panel of Fig. 1,
increasing sampling costs lead to a dynamic decision
criterion that collapses quickly toward 0 as time passes.
This result can be intuitively understood in terms of a
trade-off between the chances of making a correct decision
and the mounting costs of waiting. Assuming that the
left stimulus is indeed the target (i.e., Hl is true), as
the decision-maker waits longer to make a final decision,
the posterior probability for Hl will slowly increase.
Therefore, the expected reward, which is 1000 · π(t) −
500 · (1 − π(t)), will also slowly increase. However, at
the same time the total sampling costs increase at an
ever higher rate, thus increasingly offsetting the small
gains in expected reward as time passes. Consequently, the
decision-maker stands to gain less and less from a correct
decision but risks losing more and more for an incorrect
decision, and should therefore become increasingly willing
to risk an incorrect decision while it is still relatively
cheap.

Decreasing sampling costs, on the other hand, lead to a
non-monotonic dynamic decision criterion that increases as
time passes but eventually collapses toward 0 at the decision
deadline (see bottom right panel of Fig. 1). This result
can again be understood in terms of a trade-off between
the chances of making a correct decision and the costs of
waiting. As the decision-maker gathers more observations

from the stimuli, the posterior probability for Hl increases,
and so does the expected reward. Although the total
sampling costs also increase, they do so at a decreasing rate.
Consequently, the increase in expected reward increasingly
dominates the trade-off and the decision-maker should
become increasingly willing to risk a tiny additional loss
for an incorrect decision while losing relatively little of the
increase in expected reward by waiting for an additional
time step.

The solid gray lines in the bottom panels of Fig. 1
show the RR optimal static decision criteria for the two
reward schemes. As can be seen, the best static decision
criterion in the increasing costs case (left panel) intersects
the optimal dynamic decision criterion after about half of
the available time for the decision process and subsequently
stays above the optimal criterion. This might suggest that
a static decision criterion leads the decision-maker to
wait too long before committing to a final decision, thus
losing expected rewards due to staggering sampling costs.
In the decreasing costs case (right panel), the best static
decision criterion intersects the optimal criterion repeatedly
and the differences between the two criteria appear to
be relatively small except at the time of the decision
deadline when the optimal criterion collapses to 0.5. In
this case, the decision-maker will tend to commit to a final
decision at similar times and evidence values under the
static decision criterion as under the optimal criterion. The
decision performance before the deadline might, therefore,
be expected to be near-optimal even under a static decision
criterion. However, for both reward schemes the best static
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Fig. 2 Reward rate optimal decision criterion for different task diffi-
culties and levels of uncertainty. Panel a shows the parameter space
for our decision environment. The gray shaded area indicates the
set of possible values of p and q, black dots indicate values of
p and q for which we computed the optimal decision criterion.
Panel b shows the RR optimal decision criterion for four values of p

and q, indicated by red circles in panel a. Dotted black lines show the
optimal decision criterion if the rate parameters θT and θD are known
exactly (K = ∞), solid lines show the optimal decision criterion if
the rate parameters θT and θD have been inferred from K = 10000
(orange), K = 1000 (light blue), or K = 100 (dark blue) prior
observations

decision criterion remains at a high value at the time of the
decision deadline and will therefore incur certain loss if the
posterior probability has not reached the decision criterion.
The optimal dynamic decision criteria, on the other hand,
collapse towards 0.5 before the decision deadline, which
avoids certain loss due to the penalty for a late response.
These qualitative considerations suggest that differences
between static and dynamic decision criteria might only
result in markedly different RRs in the case of increasing
sampling costs or if task difficulty is very high.

Influence of task difficulty As described above, our decision
environment is characterized by the two rate parameters
θT and θD that determine the likelihood functions λi(x)

under the two competing hypotheses. The decision-maker
uses the observed stimulus events to update the belief
π(t) about which stimulus is the target. However, not
all stimulus events provide discriminating information; if
either both stimuli flash or neither flashes, the posterior
probability remains unchanged. Discriminating information
in favor of the correct hypothesis is observed if only the
target stimulus flashes but the distractor stimulus does not
flash. This occurs with probability p = θT (1 − θD).
Discriminating information against the correct hypothsesis
is observed if only the distractor stimulus flashes but not the
target stimulus, which occurs with probability q = θD(1 −
θT ). Hence, task difficulty can be conceptualized as the

difference between the probability p of observing veridical
information and the probability q of observing misguiding
information. We will use this conceptualization in terms
of the probabilities p and q to investigate the influence
of task difficulty on the shape of the RR optimal decision
criterion.1

Panel a of Fig. 2 shows the parameter space for our
decision environment. The gray shaded area represents
the set of possible values of p and q. To investigate the
influence of task difficulty on the shape of the RR optimal
decision criterion, we sampled 201 pairs of values (p, q)

and computed the optimal decision criterion for the reward
schemes with increasing and decreasing sampling costs.
As the qualitative patterns only depend on the difference
between p and q but not on the specific values of the two
parameters, we only discuss the results for a fixed value of
q and a representative set of four values of p, which are
indicated by red circles in panel a. We will return to full set
of 201 (p, q) pairs when we compare the expected RR under
the optimal decision criterion to the expected RR under a
suboptimal static decision criterion below.

1The relationship between the parameterization in terms of p and q,
and in terms of θT and θD is not unique. To establish a one-to-one
correspondence, we require that p < 1/4, in addition to the obvious
constraint 0 < θD < θT < 1.
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Panel b of Fig. 2 shows the RR optimal decision criterion
for different task difficulties. The dotted lines show the
optimal criterion if the decision-maker knows the rate
parameters θT and θD exactly. The top row shows the
results for the case of increasing sampling costs, with
task difficulty decreasing from left to right. As can be
seen, in line with the results established in the previous
section, increasing sampling costs induce a monotonically
decreasing optimal decision criterion, irrespective of the
task difficulty. However, the overall height of the decision
criterion is lower for higher task difficulties. This result can
be understood intuitively as follows. Because discriminating
information (i.e., only one of the stimuli flashes) is observed
less frequently in a high difficulty task, decision-makers
need to acquire more observations to reach a given value
of π(t). At the same time, expected RR decreases as
average decision times become longer. Hence, to maintain
an acceptable balance between average decision times and
expected rewards, decision-makers need to sacrifice some
of the expected rewards by accepting a lower value of
π(t) at decision commitment. In the most extreme case,
this might result in a premature collapse of the decision
criterion to 0.5, as shown in the leftmost panel. In this
case of an extremely high task difficulty, at some point
during the decision process the decision-maker stands
to gain fewer rewards from an additional observation
than is incurred in sampling costs by postponing the
final decision by one step, so the optimal strategy is to
guess.

The bottom row of panel B shows the results for
the case of decreasing sampling costs. In line with the
results established in the previous section, decreasing
sampling costs induce a non-monotonic decision criterion
that increases at first but eventually collapses to 0.5 at
the time of the decision deadline, irrespective of the task
difficulty. Similar to the case of increasing sampling costs,
a higher task difficulty results in a lower overall setting
of the RR optimal decision criterion. In the case of an
extremely high task difficulty, shown in the leftmost panel,
the decision criterion might have an initial value of 0.5 so
that the optimal strategy is to guess immediately. Due to the
high task difficulty, even modest gains in expected rewards
require several observations. At the same time, sampling
costs are high initially and might therefore outweigh these
modest gains in expected rewards.

Influence of uncertainty about rate parameters We account
for a decision-maker’s uncertainty about the rate parameters
by replacing the exact rates θT and θD in our sequential
sampling model by probability distributions. In particular,
we describe the uncertainty about the target and distractor

rate by beta distributions with parameters αT and βT , and
αD and βD , respectively:

θT ∼ B(αT , βT ), θD ∼ B(αD, βD). (5)

The beta distribution is the natural choice for expressing
uncertainty about a binomial rate. If αi = βi = 1, i ∈
{T , D}, the beta distribution is uniform over [0, 1], which
means that all values for the rates are equally likely. If the
distribution parameters are set to positive integer values, the
resulting distribution is the posterior distribution a decision-
maker obtains from a uniform prior distribution after a total
of αi + βi observations, of which αi were positive events
(i.e., stimulus i flashed αi times) and βi were negative
events (i.e., stimulus i did not flash during the remaining βi

observations). We will model different levels of uncertainty
about the rate parameters of the experimental task by setting
αi = θiK and βi = (1 − θi)K , where K is a positive
integer.2 The resulting distribution has its mode at the true
rate and has its mass more concentrated around the mode
for larger values of K; this distribution can be interpreted as
the posterior distribution obtained from K observations of
stimulus i. We will symbolically write K = ∞ for the case
where the rate parameters are known exactly.

Due to uncertainty about the rate parameters, the
likelihood of any particular type of observation for the
target and the distractor stimulus depends on the plausibility
of different values of θT and θD . The decision-maker
can account for this uncertainty by marginalizing over all
possible values for the rate parameters. The updating rule
for the decision-maker’s belief about Hl , the probability of
the left stimulus being the target, now is:

π(t)= π(t−1)
∫ 1
0

∫ 1
0 fαT ,βT

(u)fαD,βD
(v)λl(xt , u, v)dudv

(
π(t−1)

∫ 1
0

∫ 1
0 fαT ,βT

(u)fαD,βD
(v)λl(xt , u, v)dudv

+ (1−π(t−1))
∫ 1
0

∫ 1
0 fαT ,βT

(u)fαD,βD
(v)λr (xt , u, v)dudv

) .

(6)

Here fαj ,βj
, j ∈ {T , D}, denotes the probability density

function of the beta distribution, and λi(xt , u, v) is the
likelihood of xt under Hi given that θT = u and θD = v.
A consequence of the marginalization over θT and θD is
that observations that do not directly discriminate between
the target and distractor stimulus nevertheless change the
decision-maker’s posterior belief π(t). If a positive event
is observed for both stimuli (i.e., both stimuli flash), for
instance, the decision-maker updates the beliefs about the
two rate parameters, shifting the mass of the two beta

2We round θi to two decimal places so αi and βi are integer-valued for
K ≥ 100.
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distributions to higher values. This, in turn, may give higher
or lower a posteriori plausibility to Hl , depending on the
decision-maker’s prior beliefs about θT and θD .

We investigated the influence of uncertainty about the
rate parameters on the RR optimal decision criterion for
the 201 (p, q) pairs shown in panel a of Fig. 2. Panel b
shows the comparison of the RR optimal decision criterion
for different levels of uncertainty for a fixed values of q

and four representative values of p. Dotted lines show the
optimal decision criterion when K = ∞, that is, when the
rate parameters are known exactly, and solid lines show the
optimal criterion for different levels of uncertainty, orange
for K = 10000, light blue for K = 1000, and dark blue for
K = 100. As can be seen, for lower levels of uncertainty
the optimal criterion quickly approaches the criterion when
rates are known exactly, and for K = 1000 and K = 10000
the optimal criterion is visually indistinguishable from the
optimal criterion when rates are known exactly. Moreover,
the qualitative patterns, even under high uncertainty (i.e.,
K = 100), match the qualitative patterns described in
the preceding section for the case where rates are known
exactly. We will illustrate the effect uncertainty has on the
shape of the RR optimal decision criterion in more detail for
the case θT = 0.38 and θD = 0.24, and discuss how the
RR optimal dynamic decision criterion compares to the best
static decision criterion.

Figure 3 shows how the RR optimal decision criterion
changes as uncertainty about the rate parameters increases.
The top row of plots shows the prior distributions on θT

and θD for different values of K . For K = ∞ the prior
distributions are point masses at the true values of the rate
parameters. As K decreases from left to right, the overlap
between the prior distributions for the two rate parameters
increases, which means that the two hypotheses,Hl andHr ,
assign similar likelihood to different types of observations,
and are thus harder to discriminate.

The middle row of plots shows the optimal dynamic
and static decision criteria for the case of increasing
sampling costs. The RR optimal dynamic decision criterion,
shown as solid black lines, has the same shape for
different levels of uncertainty but collapses more quickly
as uncertainty increases from left to right. This quicker
collapse is due to the increasing overlap between the prior
distributions for θT and θD with increasing uncertainty,
which causes discriminating information between the two
hypotheses to accumulate more slowly. To compensate for
this increase in expected decision time and accompanying
higher cumulative sampling costs, the decision-maker needs
to accept a higher probability of an incorrect decision. The
best static decision criterion, shown as solid gray lines, is
also set to lower values as uncertainty increases from left to
right. Compared to the optimal dynamic decision criterion,
the best static decision criterion is set to considerably lower

values for the largest part of the decision process but has
the same height as the optimal dynamic criterion close
to the decision deadline. This might suggest that the best
static criterion should result in a larger number of incorrect
decisions than the optimal dynamic criterion, and might
therefore yield a lower expected reward rate. We will revisit
this prediction in the next section.

Finally, the bottom row of plots in Fig. 3 shows
the case of decreasing sampling costs. The RR optimal
dynamic decision criterion, shown as solid black lines, has
a qualitatively similar shape across levels of uncertainty,
although it is somewhat less smooth if uncertainty is very
high (i.e., K = 100). Similar to the results for the
case of increasing sampling costs, the optimal dynamic
decision criterion is set to overall lower values if uncertainty
is high, which is again due to the slower accumulation
of discriminating information. The best static decision
criterion, shown as solid gray lines, is also set to lower
values as uncertainty increases from left to right. Similar
to the case of increasing sampling costs, the best static
decision criterion is set to overall lower values than the
optimal dynamic decision criterion. In the next section we
will investigate how the expected RR compares under the
optimal dynamic and under the best static decision criterion,
and how this relationship depends on sampling costs, task
difficulty, and uncertainty about the rate parameters. As the
qualitative results in this section were similar for low levels
of uncertainty, we will only consider the cases K = 1000
and K = 100.

To summarize, in the preceding sections we investigated
the influence of sampling costs, task difficulty and
uncertainty on the shape of the RR optimal decision
criterion and on the setting of the best static decision
criterion. The results of this analysis show that, first, the
main determinant of the shape of the RR optimal decision
criterion (i.e., collapsing or expanding) are sampling costs,
and, second, task difficulty and uncertainty determine the
overall height of the decision criterion but have only a
negligible effect on the shape of the decision criterion.
Moreover, the best static decision criterion is generally set
to a lower value than the optimal dynamic decision criterion,
and higher task difficulty and uncertainty result in a lower
value of the best static decision criterion.

Expected reward rate

As the final step of our theoretical analysis we investigated
how the factors sampling costs, task difficulty, and
uncertainty interact and determine the expected RR. We
first computed the RR optimal dynamic decision criterion
for the 201 points (p, q) from the parameter space of our
decision environment shown in panel a of Fig. 2. To estimate
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Fig. 3 Reward rate optimal decision criterion for different levels of
uncertainty. The top row shows the prior distributions θT and θD for
different levels of uncertainty. The middle and bottom row show the
RR optimal dynamic decision criterion (black solid lines) and the best

static decision criterion (solid gray lines) for the case of increasing
sampling costs (middle row) and for the case of decreasing sampling
costs (bottom row)

the expected RR under the optimal dynamic decision
criterion for each of the 201 parameterizations of the
decision environment, we simulated trials of the experiment
and determined the decision time for each simulated trial
according to the optimal decision criterion. This procedure
continued until we had obtained a minimum of 20,000 trials
with an incorrect decision to ensure a good approximation
of the decision time distribution. The expected reward rate
could then be directly computed as the expected rewards
with respect to the decision time distribution. We repeated
the same procedure with several settings of a static decision
criterion and determined the decision criterion that yielded
the highest RR.

Figure 4 shows how uncertainty, sampling costs, and
task difficulty affect the expected RR under the optimal
dynamic and under the best static decision criterion. Panel

a shows the results for the case where uncertainty about
the rate parameters is low (K = 1000). The blue heatmaps
show the expected RR under the optimal dynamic (left plot)
and best static (right plot) decision criterion for increasing
(top row) and decreasing sampling costs (bottom row).
The dashed line where p = q in each plot indicates
maximum task difficulty. As can be seen, expected RR
decreases as task difficulty increases toward the line p =
q. In the case of increasing sampling costs, this decrease
in expected RR is quicker under the best static decision
criterion than under the optimal dynamic criterion whereas
in the case of decreasing sampling costs, the decrease
in expected RR appears to be equally fast under both
decision criteria. Overall, the expected RR is lower under
decreasing sampling costs than under increasing sampling
costs.
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a

b

Fig. 4 Comparison of expected rewards under static and dynamic decision criteria. Panel a shows the comparison for K = 1000 for the case
of increasing sampling costs (top row) and decreasing sampling costs (bottom row). Panel b shows the comparison for K = 100 for the case of
increasing sampling costs (top row) and decreasing sampling costs (bottom row). In each panel, the left column shows the expected reward rate for
the optimal dynamic decision criterion, the middle column shows the expected reward rate for the best static decision criterion, the right column
shows the ratio of the expected reward rate under the static and dynamic decision criterion. Plots are based on simulated first passage times for a
grid of 201 pairs (p, q) that covers the parameter space of the decision environment

The green heatmaps show the ratio of the expected RR
under the best static decision criterion and the optimal
dynamic decision criterion. These heatmaps reveal two
important results. First, the loss in expected RR under the
static decision criterion relative to the optimal criterion is
relatively small. In the case of increasing sampling costs,
the expected RR under the static criterion is at least 95%
of the maximum RR for 85% of the parameter space of the
decision environment, in the case of decreasing sampling

costs, the expected RR under the static criterion is at least
95% of the maximum RR for 95% of the parameter space.
Our comparison of the shape of the best static and the
optimal dynamic decision criterion in the previous section
showed that the best static decision criterion was set to
considerably lower values for large parts of the decision
process and only aligned with the optimal criterion close to
the decision deadline. However, this qualitative difference
in the shape of the two criteria does not preclude a similar
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expected RR; if the accumulation of evidence is relatively
slow, decision times will tend to lie close to the decision
deadline and the shape of the decision criterion early in
the decision process will have a negligible influence on the
expected RR.

Second, as task difficulty increases, the difference in
expected RR between the static and dynamic decision
criterion increases. However, for very high task difficulties,
the ratio between the expected RR under the static and under
the dynamic criterion becomes 1. For extremely high task
difficulties the optimal strategy is to guess (i.e., sufficient
discriminating information is virtually never observed
before the decision deadline), which can be implemented
equally well through a dynamic decision criterion that is
initially set to 0.5, or a static decision criterion that is set to
0.5 throughout the decision process.

Panel b of Fig. 4 shows the results for the case where
uncertainty about the rate parameters is high (K =
100). The qualitative patterns are similar to the case of
low uncertainty. As can be seen in the blue heatmaps,
expected RR decreases as task difficulty increases. In
the case of increasing sampling costs, the decrease in
expected RR with increasing task difficulty appears to be
quicker under the static decision criterion than under the
optimal dynamic decision criterion whereas in the case
of decreasing sampling costs, the decrease in expected
RR seems to be equally fast under both decision criteria.
Moreover, expected RR is lower in the case of decreasing
sampling costs than in the case of increasing sampling costs.
Compared to the results for low uncertainty shown in panel
a, higher uncertainty seems to lead to a negligible loss in
expected RR.

The ratio of the expected RR under the best static
decision criterion and the optimal dynamic decision
criterion shown in the green heatmaps shows similar
patterns as in the case where uncertainty was low. The loss
in expected RR incurred by using the best static instead of
the optimal dynamic decision criterion is relatively small.
In the case of increasing sampling costs, the best static
criterion yields at least 95% of the maximum RR for 85% of
the parameter space, and in the case of decreasing sampling
costs the best static criterion yields at least 95% of the
maximum RR for 95% of the parameter space. Moreover,
as task difficulty increases, the expected RR under the
static decision criterion decreases relative to the expected
RR under the optimal dynamic decision criterion but both
decision criteria yield the same RR for extremely high
task difficulties. In the case of increasing sampling costs
the size of this effect is similar if uncertainty about the
rate parameters is low (panel A) or high (panel B). In the
case of decreasing sampling costs, however, the change
in the ratio of the expected RRs with increasing task

difficulty is considerably weaker if uncertainty is high than
if uncertainty is low.

Discussion

In the present work we assessed how sampling costs, task
difficulty, and uncertainty about the stochastic structure
of the decision environment affect the RR optimality of
static and dynamic decision criteria in a typical perceptual
decision task. Our analysis showed that the shape of the RR
optimal dynamic decision criterion is mainly determined by
the sampling costs associated with a delayed final decision.
Increasing sampling costs induce a collapsing decision
criterion whereas decreasing sampling costs induce an
expanding decision criterion, independent of task difficulty
and uncertainty about task parameters. Increased task
difficulty and uncertainty about task parameters, on the
other hand, lead to a lower overall setting of the RR
optimal dynamic decision criterion. Our analysis further
showed that an a priori suboptimal static decision criterion
yielded similar RRs as the optimal dynamic decision
criterion across a wide range of task difficulties, under
high and low uncertainty, and for increasing as well as
decreasing sampling costs. Only task setups with a relatively
high difficulty and increasing sampling costs resulted in
significant differences between the static and dynamic
decision criterion.

An important implication of our theoretical results is that
a static decision criterion might be a robust default setting.
One of the main motivations for our theoretical analysis
was the consistent success of sequential sampling models
that assume a static decision criterion by default. Many
of the standard experimental paradigms in mathematical
psychology create a dynamic decision environment that
ought to induce dynamic decision criteria (e.g., Ratcliff and
Smith (2004) and Voskuilen et al. (2016)). However, reports
of systematic discrepancies between data and models with
a static decision criterion are conspicuously absent from
the literature. A possible explanation for the success of
these models is that a static decision criterion provides a
robust default setting that yields near-optimal RRs across
a wide range of task setups and levels of uncertainty.
At the same time, our results raise the question how
representative experimental setups that succeed at inducing
a dynamic decision criterion are for the types of decision
environments decision-makers encounter in the real world.
In our theoretical analysis, decision environments that might
reliably induce a collapsing dynamic decision criterion were
limited to a narrow range of difficulty levels with increasing
sampling costs. Similarly, studies that are regularly cited
in support of a default collapsing decision criterion use
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very specialized experimental setups with strict response
deadlines (Miletić & Van Maanen, 2019; Murphy et al.,
2016) or long training periods that minimize the decision-
maker’s uncertainty about the stochastic properties of the
environment, penalty delays for incorrect decisions, and
a mixture of task difficulties where the target stimulus is
undefined in some trials (i.e., all stimuli are stochastically
identical; e.g., Churchland et al. (2008), Hanks et al. (2011),
and Drugowitsch et al. (2012)).

Further evidence for the suggestion that a static decision
criterion provides a robust default setting is provided by
Malhotra et al. (2017). In their analysis, Malhotra et al.
considered an expanded judgment task with varying task
difficulties but without sampling costs. Using dynamic
programming techniques to derive the optimal decision
criterion, they found that many mixture proportions of task
difficulties used in published experiments yielded nearly
constant RR-optimal decision criteria. Only mixtures that
included easy and very difficult trials resulted in a markedly
collapsing optimal dynamic decision criterion. Moreover,
Malhotra et al. (2018) showed that for the particular
mixtures of task difficulties used in their experiments,
near-optimal RRs could be achieved with a wide range of
different slopes of the decision criterion, including a static
decision criterion.

A question that is closely related to the default
shape of the decision criterion concerns the learning
mechanisms through which decision-makers adapt their
decision criterion to changing reward structures and
stochastic properties of their environment. In the present
study we relied on a rudimentary, statistical model that
used Bayesian updating to account for decision-makers’
uncertainty about the rate parameters for different stimuli.
Moreover, we used computationally intensive dynamic
programming techniques to derive the optimal decision
criterion. Although this modeling approach has regularly
been used in previous studies (e.g., Brown et al. (2009),
Drugowitsch et al. (2012), and Malhotra et al. (2018)), its
cognitive plausibility is limited. Human decision-makers
need to estimate the optimal decision criterion through
repeated interactions with their decision environment,
which introduces a trade-off between time spent exploiting
the current estimate of the optimal decision criterion to
obtain rewards, and time spent exploring the environment
to refine the decision criterion. Recent experimental
studies show that, in a static environment, decision-makers
approach RR optimality with practice but their performance
remains suboptimal without proper feedback (Evans et al.
2017a, b, c).

Further insight into what degree of RR-optimality human
decision-makers can realistically achieve and on what time
scale such learning occurs might be gained by incorporat-
ing a cognitively plausible learning process into sequential

sampling models. Reinforcement learning models (Buse-
meyer and Stout, 2002; Sutton & Barton, 1998), for
instance, have successfully been used to explain the acqui-
sition of optimal decision policies in value-based decision-
making (e.g., Ahn et al. (2008), Fridberg et al. (2010),
and Steingroever et al. (2014)). Such a combined model,
as suggested by Khodadadi et al. (2017), would allow
researchers to account for factors such as incomplete explo-
ration, and help quantify the degree of RR-optimality human
decision-makers can achieve within a given time frame.

Finally, the theoretical analysis in the present work has
focused on a specific experimental paradigm and type of
sequential sampling model. Our choice of the experimental
paradigm and type of model was based on the types of
tasks and models that sparked the recent debate about
the RR optimal decision criterion (Cisek et al., 2009;
Drugowitsch et al., 2012; Hawkins et al., 2015; Shadlen
and Kiani, 2013; Thura et al., 2012; Voskuilen et al.,
2016). Here we provided the first systematic evaluation of
the theoretical basis for claims that a decreasing dynamic
decision criterion should be the default assumption in
diffusion-type sequential sampling models (e.g., Shadlen
and Kiani (2013)). However, in recent years numerous
competitor models have been developed that make different
assumptions about the mechanisms that underlie perceptual
decision making (e.g., Albantakis and Deco (2009), Bogacz
and Gurney (2007), Tsetsos et al. (2012), and Wong and
Wang (2006)). Future work should address how claims
about the RR optimality of decreasing dynamic decision
criteria translate to these models.
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